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Abstract

A commonly occurring task in intelligence tests or recreational riddles is to “find the odd one out”, that is, to
determine a unique element of a set of objects that is somehow special. It is somewhat arbitrary what exactly
the relevant feature is that makes one object different. But once that is settled, the answer becomes obvious.
Not so with a puzzle popularized by Tanya Khovanova to express her dislike for this type of puzzle. Here, it
is a more complicated relation between the objects and the features that determines the odd object, because
there is only one object that does not have a unique feature expression. This puzzle inspired me to look for
even more complicated relations between objects, features and feature expressions that appear to be even
more symmetric, but actually still single out a ”special object”. This paper provides useful definitions, a
theoretical basis, solution algorithms, and several examples for this kind of puzzle.

Keywords: puzzles, symmetry, combinatorics

1. Introduction

A certain puzzle is somewhat popular on the internet which was devised in its present, colorful form
by Khovanova [1], but is based on an older greyscale version of the same idea. The task is to identify
one of several objects in a picture (essentially reproduced in Fig. 1 on the following page) that is “odd”.
Khovanova states that she does not like these puzzles because of their arbitrariness (a sentiment she shares
with Martin Gardner, in one of whose books[2] she saw the original version, which was designed by Tom
Ransom [3]), so she (re)invented one. She apparently did so to subvert the concept of odd-one-out puzzles,
because the joke is that, while at first glance each of the objects seems to be special in its own way, there
is one (the big red bordered square) which does not have a feature expression that is unique. It has nothing
special; that is what makes it special. I found this puzzle amusing but too easy and set out to make harder
ones, calling them “ooops” (Odd-one-out puzzles).

2. Problem Description

A puzzle of the kind described in this paper is presented to the human solver as a picture showing several
objects. Each object has several features, such as shape, overall size, border style, color, number of holes,
to name a few. Each feature has several expressions. For example, “color” may have the expressions “red”,
“green”, or “blue”, and “border style” may have the expressions “absent”, “solid”, or “dashed”.

The task is to find out the one object that is “unique” or “special”. In interesting puzzles, this is compli-
cated by the fact that there are either no or several objects that have a unique expression of some feature, so
one has to consider how the objects relate to each other by having common expressions of some features.

A priori, all objects and all features stand on an equal footing. Also, all expressions of a feature stand
on an equal footing and may not be compared to the expressions of other features. There is nothing special
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A big blue square with black border
A small red square with black border
A big red square without border
A big red circle with black border
A big red square with black border

Figure 1: The puzzle that inspired this paper

about color or dashed lines just because they feel more salient visually, just as there is nothing special about
the leftmost object just because it comes first in most peoples’ reading habits. This can be expressed more
rigorously by stipulating that, whenever the puzzle is changed by exchanging any two features (possibly
requiring new expressions for one feature to be invented if they had a different number of expressions), or
by permuting the expressions of some feature, the object that is the solution of the puzzle stays the same,
except that of course the feature exchange or expression permutation has been applied to it. As an example
for an exchange of features, consider the injective mappings

{
red 7→ absent, green 7→ solid, blue 7→ dashed

}
and

{
absent 7→ blue, solid 7→ green, dashed 7→ red

}
. These can be used to exchange the features “color” and

“border style”: For each object, apply the respective mapping to the expression of the respective feature to
obtain the expression of the other feature on the transformed object. For example, a borderless green object
will become a blue object with solid border. Features that can be exchanged in a way that leaves all objects
as they were before (because their expressions correlate perfectly) are not to be considered distinct features.

Also, only expressions of the same feature can be compared among each other, and can only be com-
pared for equality. The justification for a solution is then a statement that is true about only one object
(namely the solution) and that treats all features and feature expressions on an equal footing and that is built
from only equality comparisons of expressions that belong to the same feature. For example, the justifi-
cation for why the red big bordered square is the solution for Figure 1 could be given as: “It is the only
object so that there is no feature that has a unique expression on that object”. Another justification would
be “It is the only object that differs from each other object in exactly one feature”. However, it is an invalid
justification to say “The blue object is special because color is the most salient feature, and it is the only
one with that color”. Saying this would a priori prefer color, which is not permitted.
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The question of what the relevant features and their expressions are is left to the common sense of the
solver, but once this step is accomplished successfully, the process becomes purely logical. Therefore I will
introduce a mathematical encoding for these concepts in subsection 3.1, but may sometimes use the labels
“object”, “feature” or “feature expression” when talking about the respective mathematical objects.

2.1. Examples

In this subsection, I will give a few example puzzles. To prevent any ambiguity in interpreting the
puzzles, table 1 lists the features and their possible expressions that were used in all figures except Figure
12. Note that “border width” and “hole size” are not separate features in this paper, since they correlate
perfectly with overall size.

Feature Possible expressions Remarks
Size big, small, medium Size affects border width and hole size
Color red, green, blue, yellow, white
Shape circle, triangle, square, pentagon

Border style/color
black, dashed black, absent,
gray, cyan, green

Hole count 0, 1, 2, 3, 4, 5
Hole shape circle, triangle, square, pentagon

Hole filling
white, black, red, orange,
magenta, cyan, dark green

Never the same as hole border color

Hole border
black, dashed black, absent,
gray, white, dark cyan

Same as outer border in Figures 2 and 4

Table 1: List of the features and feature expressions used in the figures. Not every figure uses all features. Not every feature
occurring in a figure uses all possible expressions.

Solutions to most of the example ooops on the following pages can be found in section 4 on page 9.

3. Mathematical Formulation

This section is about treating Odd-one-out-puzzles as mathematical objects. The first part is about
encoding the puzzle as a set of features, the features being partitions of the set of objects. This part requires
only elementary naı̈ve set theory. The second part is more technical and deals with the relationship of the
different ways of defining what “solving” such a puzzle means. You can safely skip it as the only concept
from it mentioned elsewhere in this paper without further explanation is the automorphism group.

3.1. Encoding as a Set of Partitions

For a given puzzle, let us call the collection of objects Σ, and the collection of features O. The rule that
all objects stand on equal footing means that Σ is a set, i.e. an unordered collection which contains each
element at most once. We may denote its elements by consecutive natural numbers 0, 1, . . . , n−1. Note that
integers are used here merely as convenient labels. It is invalid1 to compare them to integers obtained in
any way other than extracting them from Σ and O as set elements2 by universal or existential quantification,

1Or, to use the term introduced later, “not well-defined”
2Or, transitively, as elements of elements, elements of elements of elements, ...
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Label size color shape border holes
0 small blue square absent 2
1 big blue circle black 1
2 medium red circle black 3
3 small green square dashed black 3
4 small green triangle absent 1

Figure 2: A little harder. The numerical labels are for es-
tablishing correspondence with the textual description.

Figure 3: Still too easy. You don’t even need to use differ-
ent line colors for different features, but I did it anyway to
make clear how the lines arise. Black lines stand for same
shape, red is for color, green is for border style, blue is for
hole count, and magenta is for size.

and they may only be compared among each other for equality3. This is important because if we never
break this symmetry, we can be sure that the algorithms and invariants developed later indeed depend on
the abstract structure of the puzzle only and not on the concrete choice of integer labels.

The rules that all feature expressions stand on an equal footing and that only expressions of the same
feature can be compared (and only for equality) means that it is natural to model a feature f as an equiva-
lence relation ' f on Σ, or equivalently as a partition of Σ. A partition of a set Σ is simply a set of subsets
(called blocks) of Σ that are disjoint and together contain all elements of Σ. Thus, we will model a feature
to be a partition f whose blocks are the sets of objects that have the same expression of the feature modeled
by f . When talking about a feature expression in isolation, it can then be modeled as a dependent pair
( f ∈ O, b ∈ f ).

The rules that all features stand on an equal footing and that perfectly correlated features are actually
just one and the same feature imply that O is a set.

Thus, the essence of an odd-one-out puzzle with n objects that each have m features can be specified by
O alone, where O is a set of m partitions of an n-element set Σ. For example, the puzzle from Fig. 1 on page

3In set theoretic terms, they are urelements and there is no axiom of choice. In programming language terms, you can think of
them as objects of an opaque datatype with a non-public constructor that are comparable for equality only, with no other functions
provided and no choice operator on sets.
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color shape border holes
yellow circle black 2
blue triangle grey 3
green pentagon absent 2
yellow square grey 4
red triangle absent 1

Figure 4: One of the easiest I have found. It has only 4
features, and one of the features represents a partition of 5
different from the other features. There is only one object
that has a unique expression of this feature, so that object
is the solution.

Figure 5: The graphical solution approach. This time, it
was necessary to color the lines connecting equal feature
expressions according to the respective feature to see a dif-
ference: Red is for color, green is for shape, blue is for hole
count and black is for border.

2 could be written as
{{

0, 1, 3, 4
}
,
{
2
}}︸              ︷︷              ︸

size

,
{{

0, 1, 2, 4
}
,
{
3
}}︸              ︷︷              ︸

color

,
{{

0, 1, 2, 3
}
,
{
4
}}︸              ︷︷              ︸

shape

,
{{

0, 2, 3, 4
}
,
{
1
}}︸              ︷︷              ︸

border

 ,
or shorter: (0123|4)(0124|3)(0134|2)(0234|1), with the solution evidently being 0 as it is the only object that
does not occur alone in a block. We will use the shorter presentation in the following, and the solution will
not always be 0, in order to not spoil the riddle.

I define an ooop4 O over Σ to be a set of partitions of Σ that is uniquely solvable. O being uniquely
solvable means that there must be a uniquely special object e ∈ Σ that is the solution. “Uniquely special”
means that for each predicate P on Σ that is well-defined in terms of O (definable purely in terms of Σ, O,
and the equality and set membership predicate, as well as the usual logical operators and quantifiers), it
must hold that if P is true on exactly one object o, then o = e, and furthermore, the predicate 1{e} that is true
on e only must be well-defined.

Note that the name ooop is reserved for sets of partitions that are uniquely solvable. Other sets of
partitions of Σ may be called “pre-ooops”.

4Odd-one-out puzzle
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# size color shape border holes hole border
0 small blue circle black 2 absent
1 big blue triangle absent 1 black
2 small green circle black 1 dashed
3 big blue square black 2 black
4 big red circle absent 1 dashed

Figure 6: Note that one object has the same style on its
outer border and its hole borders. This doesn’t make it
special, because feature expressions may only be compared
to expressions of the same feature.

color shape border holes hole color hole shape
blue pentagon cyan 5 black circle
red circle grey 4 cyan pentagon
white circle black 5 orange square
green triangle grey 2 black triangle
blue square green 3 red pentagon
yellow triangle green 1 magenta square

Figure 7: An ooop with 6 objects and 6 features.

3.2. Ooop Solutions and Automorphisms

Feel free to skip this part, as it is quite technical and at the same time not totally rigorous.
For O to be an Ooop, there must be exactly one predicate on Σ that is well defined in terms of O and

true on exactly one object e. This is certainly the case if e exists as the unique common fixed point of all
automorphisms of the puzzle, in a sense that will be explained now. What are the automorphisms? The only
arbitrary choice in our presentation of the ooop as the set O was the assignment of the n integer labels to
the objects. So each automorphism5 of O is given by a permutation π : Σ → Σ. Such a permutation π is
an automorphism of O iff π(O) = O. Here I am using the convention that a function f : A → B is also a
function of type 2A → 2B, that is, between the power sets of A and B6, via ∀S ⊆ A : f (S ) =

{
f (x)

∣∣∣x ∈ S
}
.

One easily checks that these permutations indeed form a group.
Automorphisms have the property that they preserve well-defined predicates, or expressed differently,

the notion of well-definedness in terms of O is invariant under automorphisms (because O is invariant). But
what does a general permutation of Σ do to a well-defined predicate and to the notion of well-definedness?
Let PO be a predicate that is well-defined in terms of an ooop O, and let Pπ(O) be the predicate that is
defined in the same way, but using π(O) instead of O, for some permutation π : Σ → Σ. If O , π(O), then
it is possible that ∃i : PO(i) , Pπ(O)(i). It is however always the case that ∀i : PO(i) = Pπ(O)(π(i)) for all
permutations π; this is because the notion of well-definedness is parameterized by the ooop and has no other
way to treat two objects differently than by exploiting their structural role in the ooop, so if the object labels

5This definition of automorphism applies not only to ooops, but also to other sets of partitions of Σ.
6Apply this convention thrice to see how to apply a permutation of Σ to a set of partitions of Σ (which is an element of 222Σ

).
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size color shape border holes hole color hole shape hole border
big red pentagon black 1 cyan pentagon dark cyan
small blue pentagon gray 2 dark green triangle white
medium green circle black 4 orange circle white
big yellow triangle absent 2 orange square black
medium blue square absent 3 magenta pentagon absent

Figure 8: Here, the automorphism group is D4, the symme-
try group of a square. It is a bit hard to see, but the interior
of the triangles within the blue pentagon is dark green.

size color shape border holes hole shape
big red triangle grey 1 square
medium blue pentagon grey 3 circle
small red square black 3 triangle
big green square absent 2 pentagon
medium yellow circle absent 4 triangle

Figure 9: Here, the automorphism group is the symmetric
group S 4 of all permutations of the non-special objects.

change by the same permutation in the presentation of the ooop as they do in the argument of the predicate,
a well-defined predicate parameterized by the ooop must yield the same result. Hence, we can say that
general permutations do not leave all well-defined predicates unchanged; well-defined predicates should be
called covariant under permutations, but are in general not invariant. But if π is an automorphism of O, we
have O = π(O) and the two predicates are obviously the same: ∀i : PO(i) = Pπ(O)(i), and so the notion of
well-definedness, being parameterized by O, does not change under the automorphism and the predicate is
preserved.

At the same time, the predicate is also covariant, and this leads to the following argument that a special
object must be a common fixed point of all automorphisms: If there is an automorphism h of O that maps an
object i to a different object j, none of the two objects can possibly be the special object e because h(O) = O,
but h(i) = j, so i would fulfill the same predicates on Σ that are well-defined in terms of O as j does,
because any Predicate PO, well-defined in terms of O, is both covariant and invariant under automorphisms:
PO(i) = Ph(O)(h(i)) = PO( j). Hence there can be no well-defined predicate that has different truth values on
i and j. But that would be required of the predicate 1{i} that must be well-defined according to the definition
of an ooop if i was the solution. The assumption that j is the solution leads to the same kind of contradiction.
Hence, an object that is the solution of the ooop must necessarily be a fixed point of every automorphism.
The predicate “Is a common fixed point of all automorphisms” is well-defined, and if it is true for exactly
one object e, it is the required predicate 1{e} and e is the solution.

Note that the preceding did neither claim nor prove that there cannot be ooops with multiple common
fixed points of all automorphisms. I argue that this is the case: Being a common fixed point of all automor-
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color shape border holes hole color hole shape
green pentagon black 2 orange circle
blue circle black 1 dark green pentagon
red pentagon grey 3 dark green square
green square grey 1 white triangle
red triangle cyan 2 white pentagon

Figure 10: Here, the automorphism group is C4, the cyclic
group of order 4.

# color shape border
0 green pentagon absent
1 blue circle black
2 red square absent
3 green triangle black
4 blue square dashed

Figure 11: The algorithm from subsection 5.4 on page 12
takes multiple steps on this one.

Figure 12: The hardest (yet). Cannot be solved by the incomplete algorithm (without using the characteristic polynomial as an
invariant). By being a bit creative, I could manually find the hidden asymmetry without resorting to the automorphism group or the
costly characteristic polynomial. It turns out that three of the features are special in the way they relate to other features. The ooop
is also presented here with letter/typographic emphasis features for clearer representation.
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phisms means being structurally different7 from all other objects: Whenever there are two objects that are
not structurally different, there is an automorphism that maps one to the other, and vice versa. For struc-
turally different objects, however, it should always be possible to construct a well-defined predicate that
tells them apart, because they play a different role in the structure of the set of partitions and the difference
of their roles can be specified in a well-defined way by using that structure. So especially for the set of fixed
points, there are then well-defined predicates that can tell each one apart from the rest.

For example, the pre-ooop (0|12|34)(1|0234) has only one nontrivial automorphism, namely the trans-
position of 3 and 4. The three fixed points i = 0, 1, 2 are each characterized by a different predicate 1{i} that
is true exclusively on i:

• 1{0}( j) can be expressed as “ j is fixed by all automorphisms and does not occur in a block of size 2”.

• 1{1}( j) can be expressed as “ j is fixed by all automorphisms and does not occur in a block of size 4”.

• 1{2}( j) can be expressed as “ j is fixed by all automorphisms and does not occur in a block of size 1”.

But according to the definition of an ooop, there can be only one such predicate, so that pre-ooop is not an
ooop.

I omit a more rigorous proof that for each common fixed point i of all automorphisms, the predicate 1{i}
is well-defined.

4. About the Ooops in this Paper

Figure 2 on page 4 shows the only puzzle I have constructed by hand. The solution is given by the
blue square, and one possible justification for this is “It is the only object so that for each other object, they
agree on the expression of exactly one feature.” Figure 3 on page 4 shows a graphical way to arrive at this
statement.

Figure 4 on page 5 shows an ooop found by a computer search. The solution is given by the yellow
circle, and one possible justification for this is “It is the only object that has a unique expression of the only
feature (namely, “border style”) that has three different expressions (instead of four).” Figure 5 on page 5
shows a graphical way to arrive at this solution.

Figures 6 and 7 on page 6 show two more puzzles. Solutions are intentionally not given.
For three of the following four ooops, I give only a text form of the justification of the solution. It should

be easy to use the given justification to identify the special object. It should also be easy to ignore the texts
in case you want to solve the riddles yourself.

A simple justification for the solution of Figure 8 on page 7 is: “There are two features that have only
three expressions. The special object is the only one that has a unique expression of these two features.”

A simple justification for the solution of Figure 9 on page 7 is: “There are three features that have only
three expressions. The special object is the only one that has a unique expression of these three features.”

The special object in Figure 10 on the preceding page is the green square with grey border and one
white triangular hole. What is the justification for this?

A simple justification for the solution of Figure 11 on the previous page is: “There is one feature that
has four expressions. The special object is the only one that has nothing in common with any object that
does not have a unique expression of this feature”. The words “nothing in common” of course just apply

7In the sense of playing a different role in the structure of the set of partitions
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to proper features; for example, all objects have their size and hole count in common, but these are not
considered features here because they are the same for all objects in this ooop.

Finally, Figure 12 on page 8 shows the hardest ooop I could find, with nine features. Note that due to
the high number of features, I used two different sets of features and feature expressions. In the case of
the Letter/Typographic emphasis features, each feature is assigned a letter and the four expressions of each
feature are represented by four different ways of writing that letter. The graphical solution technique of
drawing colored lines was in itself not sufficient to see which object is special.

5. Useful Definitions for Solving Ooops

For solving ooops, it is helpful to define some properties of objects or features that are invariant under
automorphisms8. That is, if there is an automorphism that maps i to j, then i and j have the same value of
the invariant property. This is also interesting for generating challenging ooops, because the easy solutions
that could be solved using these invariants can quickly be weeded out or not even be considered in the first
place.

5.1. Invariant: Class Histogram

The ooop depicted in Fig. 1 on page 2 could be solved by counting how many feature expressions
are unique to a given object i, and noting that this number is different for one object. This idea readily
generalizes to a histogram of the sizes of the equivalence classes that i is a part of. This invariant I call the
class histogram. To be precise, the class histogram for object i of an ooop O with n objects is a finite list of
integers C(O, i) ∈ Nn with

C(O, i)k =
∣∣∣∣{ f

∣∣∣i ∈ x ∈ f ∈ O, |x| = k
}∣∣∣∣, 1 ≤ k ≤ n.

As an example, the class histogram for the solution of 1 on page 2 is (0, 0, 0, 4, 0), while the class
histograms for the other four objects are all (1, 0, 0, 3, 0).

An ooop where all objects have the same class histogram is called class constant. To solve these, we
consider other invariants.

5.2. Invariant: Link Histogram

The ooop depicted in Fig. 2 on page 4 is class constant. It has presentation

(02|34|1)︸    ︷︷    ︸
size

(01|34|2)︸    ︷︷    ︸
color

(03|12|4)︸    ︷︷    ︸
shape

(04|12|3)︸    ︷︷    ︸
border

(0|14|23)︸    ︷︷    ︸
holes

,

where the numbers are counting counterclockwise from the blue square. The class histogram for all objects
is (1, 4, 0, 0, 0).

To identify the special object, we need another invariant. If we draw a line between two objects for each
feature for which the objects have the same expression, we arrive at Fig. 3 on page 4, where the solution is
obvious: Most objects have two single lines and one double line attached to them, but one has four single
lines. This motivates what I call the link histogram: It is a histogram that tells for each relevant number m
how many partners an object has with which it agrees on m features.

8In case you did not read the previous subsection: An ooop-automorphism is essentially a relabeling of the objects (here:
numbers) occurring in the set of partitions that leaves the representation of the riddle as a set of partitions unchanged.
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The precise definition of the link histogram is that the link histogram of an object i of an ooop O is a
finite list of integers L(O, i) ∈ N1+|O| with

L(O, i)k =

∣∣∣∣∣∣{ j
∣∣∣∣∣ j ∈ Σ \

{
i
}
,
∣∣∣∣{ f

∣∣∣ f ∈ O, i ' f j
}∣∣∣∣ = k

}∣∣∣∣∣∣, 0 ≤ k ≤
∣∣∣O∣∣∣.

The link histograms for Fig. 2 and 3 are: (0, 4, 0, 0, 0, 0) for object 0 and (1, 2, 1, 0, 0, 0) for all the rest.
Thus we see object 0 can be singled out using the link histogram, and therefore is the solution. The natural
language justification for the solution can be extracted from the link histogram: By observing that the only
nonzero entry in the link histogram of the special object is at position 1, which means that it has 1 feature
expression in common with each other object, we arrive at the description of the solution as “the only object
so that for each other object, they agree on the expression of exactly one feature.” (See section 4 on page 9)

An ooop where all objects have the same link histogram is called link constant.

5.3. Invariant: Integer Partitions

The ooop depicted in Fig. 6 on page 6 is class constant and link constant. It has presentation9

(02|134)︸   ︷︷   ︸
size

(013|2|4)︸    ︷︷    ︸
color

(024|1|3)︸    ︷︷    ︸
shape

(023|14)︸   ︷︷   ︸
outer border

(03|124)︸   ︷︷   ︸
holes

(0|13|24)︸    ︷︷    ︸
hole border

.

The class histogram for all objects is (1, 2, 3, 0, 0) and the link histogram is (0, 2, 0, 2, 0, 0, 0). Therefore, it
cannot be solved simply by using these invariants.

However, the features, viewed as partitions, do not represent the same integer partitions: The first two
correspond to the integer partition 1 + 1 + 3, the next three correspond to the integer partition 2 + 3, and
the last one corresponds to 1 + 2 + 2. This census of integer partitions is obviously invariant under ooop-
automorphisms (indeed, under arbitrary permutations of Σ). Retaining one of the three kinds of feature and
discarding the rest does not break any symmetries that were not already broken and thus yields another ooop
with the same solution, which may then be solvable recursively with this or another technique.

In the case of the ooop from Fig. 6 on page 6, we can for example consider only the feature “hole
border” (14|0|23), as it is the only one corresponding to the integer partition 1 + 2 + 2. In the resulting ooop
O′ =

{{
0
}
,
{
1, 3

}
,
{
2, 4

}}
, only one object e has C(O′, e)1 = 1, thus it is the solution. Of course this could

be said more plainly by stating that the feature “hole border” is special because it is the only one that has
a unique expression on exactly one object, thus that object, 0, must be the solution. My reason for first
giving the more long-winded statement about using the integer partition invariant to justify ignoring some
features, and then using the class histogram on the rest to single out an object, is that it generalizes more
systematically to the algorithm explained in the next subsection.

An ooop where all features represent the same integer partition is called partition constant. Examples
of partition constant ooops are shown in Fig. 2 on page 4 (not listed in table 2 on page 18, as it is not link
constant) and Fig. 12 on page 8 (presented in the last row of table 2).

9Note that there are different ways to label the objects with numbers that result in the same presentation, but then the partitions
of Σ would denote different features than they do now. This is an effect of the existence of automorphisms. For the most part, I
avoid making such arbitrary choices because I want to encourage thinking about the objects as what they are in relation to each
other and not as some kind of label that introduces a spurious distinctness.
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5.4. An Incomplete Solution Algorithm

A solution can always be found as the fixed point of the automorphism group’s action on Σ, which can
be found by checking all n! permutations of Σ. But often a more direct way is available that does not suffer
that much from the effects of combinatorial explosion, running in polynomial time if it terminates at all.

The idea here is to compute a sequence Fk of partitions of O and a sequence Bk of partitions of Σ. These
partitions tell us what we already know about some features and objects being structurally different from
others after iteration k of the algorithm. Initially, the partitions B0 and F0 contain only one block, because
a priori all objects and also all features stand on an equal footing. Then, asymmetries are discovered using
invariants and in turn induce discovery of other asymmetries until an asymmetry is found that singles out
one object.

If you are not interested in the technical details of the algorithm and an example how it runs, you can
skip the rest of the subsection.

We will need an operation ~∩ that, given a set M (such as an ooop or feature) and a subset b of Σ, returns
a version of M where only objects in b have been retained at whatever depth they occurred, and empty sets
are removed. That is,

M~∩b = (M ∩ b) ∪
{
S ~∩b

∣∣∣∣S ∈ M, S < Σ
}
\
{
∅
}
.

At iteration k ∈ N+ of the algorithm, we do the following:

• Refine the partition of O: Fk is computed from Fk−1 and Bk−1 as the coarsest common refinement of

– Fk−1

– For each b ∈ Bk−1, the partition induced by the equivalence relation ∼b on O defined as follows:
f ∼b g iff the two partitions f ~∩b resp. g~∩b of b represent the same partition of the integer

∣∣∣b∣∣∣.
• Refine the partition of Σ: Bk is computed from Fk and Bk−1 as the coarsest common refinement of

– Bk−1

– For each (b, c) ∈ Bk−1 × Fk, the union of Σ \ b and the partition induced by the equivalence
relation ≈b,c on b defined by i ≈b,c j ⇐⇒ C(c′, i) = C(c′, j) ∧ L(c′, i) = L(c′, j), where
c′ = c~∩b.10 Here, the definition of link histograms and class histograms has been extended to
be applicable to sets of partitions of Σ that are not necessarily ooops.

• Test if Bk contains a block b of size 1. If so, output the element of b as the solution and terminate.
Else, continue with iteration k + 1.

One can easily see that the algorithm is correct by observing that everything is covariant under permu-
tation of the integers in the input ooop because they are only ever compared for equality. Therefore, if the
algorithm can single out an element of Σ, it must be the solution, which is presumed to be unique. However,
the algorithm cannot solve every ooop. The one shown in Fig. 12 on page 8 and presented in the last row
of table 2 on page 19 is a counterexample because it is class constant, link constant and partition constant.
Hence, the algorithm never refines anything.

10 This distinguishes the objects by several class and link histograms that each consider one subset of features that we could
already tell apart from others (but not from each other), and one subset of objects that we could already tell apart from others (but
not from each other).
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As an example run of the algorithm, let us solve the ooop displayed in Fig. 11 on page 8. It has
presentation

(2|03|14)︸    ︷︷    ︸
color

(02|13|4)︸    ︷︷    ︸
border

(3|0|1|24)︸     ︷︷     ︸
shape

,

as seen in row 2 of table 2 on page 18. The algorithm then runs as follows: (Feel free to skip this unless you
want to trace in detail how the algorithm works)

F0 =
{{{{

0, 3
}
,
{
2
}
,
{
1, 4

}}︸                ︷︷                ︸
fcolor

,
{{

0, 2
}
,
{
1, 3

}
,
{
4
}}︸                ︷︷                ︸

fborder

,
{{

0
}
,
{
1
}
,
{
2, 4

}
,
{
3
}}︸                   ︷︷                   ︸

fshape

}}
B0 =

{{
0, 1, 2, 3, 4

}}
b1,1 B

{
0, 1, 2, 3, 4

}
∼b1,1≡

{{{{
0, 3

}
,
{
2
}
,
{
1, 4

}}
,
{{

0, 2
}
,
{
1, 3

}
,
{
4
}}}

,
{{{

0
}
,
{
1
}
,
{
2, 4

}
,
{
3
}}}}

=

{{
fcolor, fborder

}
,
{
fshape

}}
F1 =

{{{{
0, 3

}
,
{
2
}
,
{
1, 4

}}
,
{{

0, 2
}
,
{
1, 3

}
,
{
4
}}}

,
{{{

0
}
,
{
1
}
,
{
2, 4

}
,
{
3
}}}}

=

{{
fcolor, fborder

}
,
{
fshape

}}
The feature fshape =

{{
0
}
,
{
1
}
,
{
2, 4

}
,
{
3
}}

has been determined to be structurally different from the other two.

c1,1 B
{{{

0, 3
}
,
{
2
}
,
{
1, 4

}}
,
{{

0, 2
}
,
{
1, 3

}
,
{
4
}}}

=
{
fcolor, fborder

}
c′1,1 Bc1,1~∩b1,1 = c1,1

C(c′1,1, 0) =C(c′1,1, 1) = C(c′1,1, 3) = (0, 2, 0, 0, 0)

C(c′1,1, 2) =C(c′1,1, 4) = (1, 1, 0, 0, 0)

L(c′1,1, 0) =L(c′1,1, 1) = L(c′1,1, 3) = (2, 2, 0)

L(c′1,1, 2) =L(c′1,1, 4) = (3, 1, 0)

≈b1,1,c1,1≡
{{

0, 1, 3
}
,
{
2, 4

}}

c1,2 B
{{{

0
}
,
{
1
}
,
{
2, 4

}
,
{
3
}}}

=
{
fshape

}
c′1,2 Bc1,2~∩b1,1 = c1,2

C(c′1,2, 0) =C(c′1,2, 1) = C(c′1,2, 3) = (1, 0, 0, 0, 0)

C(c′1,2, 2) =C(c′1,2, 4) = (0, 1, 0, 0, 0)

L(c′1,2, 0) =L(c′1,2, 1) = L(c′1,2, 3) = (4, 0, 0, 0, 0)

L(c′1,2, 2) =L(c′1,2, 4) = (3, 1, 0, 0, 0)

≈b1,1,c1,2≡
{{

0, 1, 3
}
,
{
2, 4

}}
The objects 0, 1, 3 have been determined to be structurally different from the objects 2, 4.

B1 =
{{

0, 1, 3
}
,
{
2, 4

}}
13



Next iteration.

b2,1 B
{
0, 1, 3

}
Note:

fcolor~∩b2,1 =
{{

0, 3
}
,
{
2
}
,
{
1, 4

}}
~∩b2,1 =

{{
0, 3

}
,
{
1
}}

fborder~∩b2,1 =
{{

0, 2
}
,
{
1, 3

}
,
{
4
}}
~∩b2,1 =

{{
0
}
,
{
1, 3

}}
fshape~∩b2,1 =

{{
0
}
,
{
1
}
,
{
2, 4

}
,
{
3
}}
~∩b2,1 =

{{
0
}
,
{
1
}
,
{
3
}}

∼b2,1= ∼b1,1

b2,2 B
{
2, 4

}
Note:

fcolor~∩b2,2 =
{{

0, 3
}
,
{
2
}
,
{
1, 4

}}
~∩b2,2 =

{{
2
}
,
{
4
}}

fborder~∩b2,2 =
{{

0, 2
}
,
{
1, 3

}
,
{
4
}}
~∩b2,2 =

{{
2
}
,
{
4
}}

fshape~∩b2,2 =
{{

0
}
,
{
1
}
,
{
2, 4

}
,
{
3
}}
~∩b2,2 =

{{
2, 4

}}
∼b2,1= ∼b1,1

F2 =F1

No new information about the structural differences of features could be derived.

c2,1 Bc1,1

c′2,1 Bc2,1~∩b2,1 =

{{{
0, 3

}
,
{
1
}}
,
{{

0
}
,
{
1, 3

}}}
C(c′2,1, 0) =C(c′2,1, 1) = (1, 1, 0)

C(c′2,1, 3) =(0, 2, 0)

L(c′2,1, 0) =L(c′2,1, 1) = (1, 1, 0)

L(c′2,1, 3) =(0, 2, 0)

≈b2,1,c2,1≡
{{

0, 1
}
,
{
3
}
,
{
2, 4

}}
At this point, an optimized implementation of the algorithm might already notice that the solution has been
found. But let’s continue, for completeness of presentation:

c′2,2 Bc2,1~∩b2,2 =

{{{
2
}
,
{
4
}}}

C(c′2,2, 2) =C(c′2,2, 4) = (1, 0)

L(c′2,2, 2) =L(c′2,2, 4) = (1, 0)

≈b2,2,c2,1≡
{{

0, 1, 3
}
,
{
2, 4

}}

c2,2 Bc1,2

c′2,3 Bc2,2~∩b2,1 =

{{{
0
}
,
{
1
}
,
{
3
}}}

C(c′2,3, 0) =C(c′2,3, 1) = C(c′2,3, 3) = (1, 0, 0)

L(c′2,3, 0) =L(c′2,3, 1) = L(c′2,3, 3) = (1, 0)

≈b2,1,c2,2≡
{{

0, 1, 3
}
,
{
2, 4

}}
14



c′2,4 Bc2,2~∩b2,2 =

{{{
2, 4

}}}
C(c′2,4, 2) =C(c′2,4, 4) = (0, 1)

L(c′2,4, 2) =L(c′2,4, 4) = (0, 1)

≈b2,2,c2,2≡
{{

0, 1, 3
}
,
{
2, 4

}}
B2 =

{{
0, 1

}
,
{
3
}
,
{
2, 4

}}
The algorithm terminates and has found the solution 3, because 3 is in a block all for itself.

5.5. Invariant: Characteristic Polynomial
This subsection is again quite technical and requires advanced knowledge of linear algebra and some

graph theory and number theory. It is not relevant to the rest of the paper and can safely be skipped.
The invariants discussed so far are all based on local properties of an object or feature: They do not look

further than the immediate surroundings in the network of relationships that these entities have among each
other. A global approach should yield stronger invariants.

Here is one idea to construct such an invariant, applicable to both objects o and features p: Use the
characteristic polynomial of a multigraph whose vertices are the feature expressions ( f ∈ O, x ∈ f ) and
which has an edge between two feature expressions ( f , x) and (g, y) whenever f = g ∧ x , y and also for
each z ∈ (x ∩ y) whenever f , g (note that the latter is meant to result in

∣∣∣x ∩ y
∣∣∣-fold edges). Additionally,

a feature expression ( f , x) gets a self-loop iff f = p (in case the invariant is computed for a feature p), or
iff o ∈ x (in case the invariant is computed for an object o). Note that treating an object or feature different
from the others (via the self-loops) does not violate the requirement that symmetry not be broken, provided
we do it for all separately in the same way for all objects or features, and combine the results in a symmetric
manner. These three edge types correspond to three relevant relations that feature expressions can have: The
binary relations “expressions of the same feature” and “expressed on the same object”, and the unary relation
“is an expression of the feature that the characteristic polynomial is computed for” resp. “is expressed on
the object that the characteristic polynomial is computed for”. To obtain a stronger invariant, the three edge
types are represented by different values in the adjacency matrix of the graph.

The adjacency matrix for a graph that treats one object o differently has rows and columns indexed by
feature expressions ( f ∈ O, x ∈ f ) and its entries are polynomials in a, b, c:

M(o)
( f ,x)(g,y) =


a f = g ∧ x = y ∧ o ∈ x
b f = g ∧ x , y∣∣∣x ∩ y

∣∣∣ · c f , g
0 otherwise

The adjacency matrix M(p) for a graph that treats one feature p differently, on the other hand, has entries:

M(p)
( f ,x)(g,y) =


a f = g ∧ x = y ∧ f = p
b f = g ∧ x , y∣∣∣x ∩ y

∣∣∣ · c f , g
0 otherwise

15



Thus, the characteristic polynomial det
(
M(·) − λ · 1

)
of an object or feature is a polynomial over the

integers in the four variables a, b, c and λ. It may be used in an attempt to tell the objects apart directly
or in the context of the algorithm from the previous section as an additional invariant to tell apart objects
(along with or instead of the invariants C and L) or features (along with or instead of the represented integer
partition).

The full characteristic polynomial is costly to compute and usually not necessary to find out special
objects or features. The following simplifications can be made to get an invariant that is still useful:

• Substitute constants for a, b, c to get an univariate polynomial.

• Compute in a finite field Fq for some prime q.

• Compute only the residue of the polynomials modulo some irreducible polynomial.

In the following example, the first two simplifications have been applied, with a = 11, b = 13, c = 17,
and q = 231 − 1, to compute the characteristic polynomials for the ooop shown in Fig. 12 on page 8 and
presented in the last row of table 2 on page 19. This ooop is the only known ooop11 that is class constant,
link constant and partition constant, and therefore could not be solved by the incomplete algorithm from the
previous subsection.

For one object, the characteristic polynomial obtained this way is
1000686794+778979638λ+1208471834λ2+214842245λ3+407159371λ4+2061933376λ5+220672646λ6+

1901760362λ7 + 2080891101λ8 + 1546271272λ9 + 1253466070λ10 + 1331302039λ11 + 1189184501λ12 +

391674026λ13 + 1229795532λ14 + 176746726λ15 + 811071339λ16 + 1665817037λ17 + 412811464λ18 +

1403554725λ19 + 978000731λ20 + 1184024975λ21 + 1238899225λ22 + 1699918815λ23 + 1895673066λ24 +

772980284λ25 + 188615753λ26 + 784633410λ27 + 1856783405λ28 + 1954202388λ29 + 1052075028λ30 +

2002069589λ31 + 1892952859λ32 + 580162601λ33 + 1902443869λ34 + 2147483548λ35 + 1λ36.
For two of the objects, the characteristic polynomial is

199804076+946132397λ+2019487070λ2+1155996283λ3+117794738λ4+693807738λ5+1885542751λ6+

756373839λ7 + 1701861809λ8 + 795190249λ9 + 154076335λ10 + 1498806526λ11 + 1565519423λ12 +

1327407924λ13 + 343566432λ14 + 1889794430λ15 + 617814599λ16 + 1797185656λ17 + 833959024λ18 +

658492377λ19 + 1856809957λ20 + 639642216λ21 + 133381603λ22 + 1564465521λ23 + 587228759λ24 +

1731230403λ25 + 2126664317λ26 + 1183731482λ27 + 1691807419λ28 + 984612598λ29 + 642095191λ30 +

2002069589λ31 + 1892952859λ32 + 580162601λ33 + 1902443869λ34 + 2147483548λ35 + 1λ36.
For the remaining three objects, the characteristic polynomial is

1781456468 + 1259785295λ + 971138483λ2 + 1183570439λ3 + 920726353λ4 + 2141349017λ5 +

229538027λ6 + 1501555664λ7 + 1765004535λ8 + 394725299λ9 + 1200544688λ10 + 1557373746λ11 +

2076428178λ12 + 681627508λ13 + 1535636483λ14 + 1508409635λ15 + 869115566λ16 + 1357296231λ17 +

771828013λ18 + 894415995λ19 + 1049757853λ20 + 888659133λ21 + 562287643λ22 + 448010323λ23 +

829518313λ24 + 128655495λ25 + 460784954λ26 + 590599328λ27 + 2001018801λ28 + 15022808λ29 +

232115354λ30+2002069589λ31+1892952859λ32+580162601λ33+1902443869λ34+2147483548λ35+1λ36.
So we see that in this case, using the simplified characteristic polynomial directly as an invariant for

objects was sufficient for finding the odd one out. Actually, the constant terms of the polynomials would
already have been enough, and these are just the determinants of the matrices, so in this case there was
not even a need to handle any polynomials. This demonstrates that the determinants of the adjacency

11Apart from the trivial
{{{

0
}}}
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matrices are already on their own useful invariants that detect differences not detected by the class and link
histograms.

For completeness, here are the characteristic polynomials for the features:
Three features have characteristic polynomial

1103825254+271709124λ+940632656λ2+1321200813λ3+275847580λ4+639479212λ5+2006258607λ6+

435937673λ7 + 250669347λ8 + 609865962λ9 + 463063716λ10 + 1149682437λ11 + 1546682903λ12 +

98121445λ13 + 78408214λ14 + 1361178359λ15 + 376397978λ16 + 1000588474λ17 + 1845784957λ18 +

1112872939λ19 + 1267952900λ20 + 1078281656λ21 + 1313932574λ22 + 970420845λ23 + 605822464λ24 +

182143317λ25 + 683412853λ26 + 1840622570λ27 + 658162437λ28 + 138670906λ29 + 373019954λ30 +

1899964665λ31 + 1605503986λ32 + 873211990λ33 + 1902440239λ34 + 2147483603λ35 + 1λ36.
The remaining six have characteristic polynomial

1470001302+89131162λ+839884428λ2+1349959666λ3+2064892978λ4+1025553272λ5+48155734λ6+

1118871747λ7 + 105292165λ8 + 657832426λ9 + 548252311λ10 + 1172672363λ11 + 911929140λ12 +

1336291527λ13 + 1281178238λ14 + 1711599975λ15 + 1148307748λ16 + 985000829λ17 + 942289526λ18 +

95601140λ19 + 1668443904λ20 + 464649528λ21 + 1939404040λ22 + 1421992093λ23 + 1584353662λ24 +

588942694λ25 + 1088038517λ26 + 1034399759λ27 + 1350393884λ28 + 1667618633λ29 + 373019954λ30 +

1899964665λ31 + 1605503986λ32 + 873211990λ33 + 1902440239λ34 + 2147483603λ35 + 1λ36.
Here, too, the constant terms are already sufficient to note a difference. This suggests a different way

to use the characteristic polynomial: Instead of actually computing the symbolic expression for the poly-
nomial, which is quite a hassle as it involves the determinant of a polynomial-valued matrix, we simply
evaluate the polynomial at different values of λ, one after the other. This requires just an ordinary determi-
nant computation with simple values for each evaluation. If we are lucky, the first evaluation already gives
us the solution or at least new information. Else, we evaluate at a different value of λ, for up to m B

∑
f∈O

∣∣∣ f ∣∣∣
different values of λ. Because m is the degree of the polynomial (which is monic), this gives us all the in-
formation and discriminative power of the polynomial, but incrementally. After that, more evaluations do
not give us new information, as the polynomial can already be reconstructed via interpolation from the first
m evaluations.

I suspect that the graph contains some redundancy12 and the degree of the characteristic polynomial may
be made lower without losing discriminative power. For example, by omitting from the graph the nodes for
feature expressions that occur on only one object, i.e. nodes ( f , x) with |x| = 1, no information might be
lost. It might be possible to infer their existence and the edges in which they participate from the remaining
nodes and their relations to each other, because for each feature f , being a partition of n elements, it must
hold that

∑
x∈ f |x| = n, and if we know that any missing nodes stand for unique feature expressions, we can

maybe reconstruct the graph with these nodes from the one without them.

6. A Table of Ooops

Table 2 on the next page lists all class constant13, link constant14 ooops with n objects with at most n+3
features for n ≤ 5, found with brute force search by a computer. It turns out that there are none with n < 5.
Features that have exactly 1 or n equivalence classes of expressions have been excluded from consideration,

12Compare the higher order terms of the polynomials and observe that there is not much variation to see what raised my suspi-
cions.

13See subsection 5.1 on page 10
14See subsection 5.2 on page 11
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as they do not contain any information that could help with solving the puzzle. You can of course still use
them in a graphical version of the puzzle to sow confusion.

Because the the ooops in the table are class constant and link constant, the class histograms15 and link
histograms16 for all objects in a table row are the same. The two histograms are given in a separate column
each. Since all numbers occurring in the histograms have only one digit, the histograms (columns L and C)
are simply given as a string of digits with trailing zeros removed to save space.

Of course, only one of each isomorphism class of ooops is listed. Two ooops O and O′ over Σ are
isomorphic iff there is a permutation π : Σ→ Σ with π(O) = O′.

Some of the table rows have an associated graphical depiction in this paper. A correspondence of the
numbers and partitions in the table to the objects and features in the images is usually not given as it would
not be unique anyway due to the existence of nontrivial automorphisms.

Most of the automorphism groups are isomorphic to C2, except for one occurrence of D4 (depicted in
Fig. 8 on page 7), one occurrence of C4 (Fig. 10 on page 8) and one occurrence of S 4 (Fig. 9 on page 7),
which is the maximum possible automorphism group for an ooop with 5 objects, as there are no further
ways to permute the 4 non-special elements while leaving the special element fixed.

Additionally, two ooops with n = 6 are listed. Both of them have automorphism group C2×S 3. In one of
them, all features correspond to the same integer partition 1 + 1 + 2 + 2. This makes it partition constant17 in
addition to being class constant and link constant. Therefore, the solution techniques presented in section 5
on page 10 are insufficient to solve it, except for the characteristic polynomial. It is depicted in Figure 12
on page 8.

Table 2: List of all known class-constant and link-constant ooops

Presentation (object labels chosen randomly) Symmetry C L Figure
(4|02|13)(1|4|2|03)(1|0|24|3)(14|0|2|3) C2 22 22 4

(2|03|14)(02|13|4)(3|0|1|24) C2 12 22 11
(1|24|03)(0|24|13)(14|02|3)(1|4|2|03)(1|4|02|3)(4|0|2|13)(14|0|2|3) C2 24 202

(01|2|34)(01|24|3)(0|12|34)(1|24|03)(1|4|2|03)(4|0|12|3) C2 24 202
(1|02|34)(1|24|03)(14|0|2|3)(01|4|2|3)(1|04|2|3)(4|0|2|13)(4|0|12|3)(1|4|0|23) D4 44 04 8
(14|0|23)(01|24|3)(1|04|2|3)(1|0|2|34)(1|4|2|03)(4|0|2|13)(1|4|02|3)(4|0|12|3) C2 44 04

(14|0|23)(0|12|34)(0|24|13)(01|4|2|3)(1|04|2|3)(1|4|02|3)(1|4|2|03) S 4 34 04 9
(14|2|03)(0|12|34)(01|24|3)(1|4|02|3)(1|4|0|23)(4|0|2|13)(1|04|2|3) C2 34 04

(14|02|3)(1|04|23)(4|12|03)(01|24|3)(4|0|2|13)(1|0|2|34) C2 24 04
(0|24|13)(14|02|3)(1|04|23)(4|12|03)(1|0|2|34)(01|4|2|3) C4 24 04 10

(1|24|03)(4|02|13)(0|24|13)(01|2|34)(01|4|23)(04|12|3)(14|0|23)(1|04|2|3) C2 26 022
(1|24|03)(14|0|23)(14|2|03)(04|12|3)(0|12|34)(1|04|23)(4|02|13)(01|4|2|3) C2 26 022
(04|12|3)(01|2|34)(1|02|34)(1|24|03)(14|02|3)(14|0|23)(01|4|23)(4|0|2|13) C2 26 022
(14|0|23)(4|12|03)(1|24|03)(1|02|34)(14|02|3)(0|24|13)(04|2|13)(01|4|2|3) C2 26 022
(4|012|3)(0|2|134)(1|2|034)(1|024|3)(4|0|123)(4|02|13)(0|12|34)(1|04|2|3) C2 323 0202
(1|4|023)(0|2|134)(1|2|034)(4|0|12|3)(14|0|2|3)(1|4|02|3)(012|34)(124|03) C2 323 0202

(0|2|134)(4|012|3)(014|2|3)(1|02|34)(1|4|0|23)(01|234)(14|023) C2 223 0202
(4|012|3)(1|0|234)(1|2|034)(014|2|3)(01|2|34)(1|4|0|23)(4|0|12|3)(04|123) C2 323 0202

(4|2|013)(1|0|234)(0|124|3)(4|012|3)(01|2|34)(1|24|03)(12|034) C2 223 0202
(0|124|3)(1|2|034)(1|4|2|03)(4|0|12|3)(014|23)(04|123)(14|023) C2 223 0202

(02|134)(013|2|4)(024|1|3)(023|14)(03|124)(0|13|24) C2 123 0202 6

15See subsection 5.1 on page 10
16See subsection 5.2 on page 10
17See subsection 5.3 on page 11
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Presentation Symmetry C L Figure
(1|024|3)(1|02|34)(4|2|013)(014|2|3)(4|12|03)(4|0|123)(1|0|234)(14|0|2|3) C2 323 004
(1|2|034)(1|4|023)(0|124|3)(1|4|2|03)(14|0|2|3)(4|0|12|3)(04|123)(014|23) C2 323 0202

(4|0|123)(1|04|2|3)(124|03)(24|013)(024|13)(12|034) C2 123 0202
(4|12|03)(1|24|03)(0|124|3)(01|2|34)(01|234)(012|34)(12|034)(24|013) C2 143 02002

(4|2|013)(0|2|134)(1|4|02|3)(1|0|24|3)(124|03)(14|023)(024|13) C2 233 0202
(1|24|03)(04|2|13)(4|0|12|3)(024|13)(24|013)(12|034)(124|03)(04|123) C2 143 02002
(14|0|23)(4|012|3)(1|24|03)(01|2|34)(04|123)(024|13)(02|134)(12|034) C2 143 0022
(01|2|34)(0|24|13)(1|4|02|3)(12|034)(04|123)(14|023)(014|23)(124|03) C2 143 0022
(04|12|3)(01|4|23)(1|0|2|34)(0|1234)(2|0134)(4|0123)(0124|3)(1|0234) C2 2204 00022

(01|5|4|23)(4|05|2|13)(1|4|02|35)(14|5|0|2|3)(1|45|0|2|3)(1|5|0|24|3) C2 × S 3 33 23 7
(1|4|05|23)(4|05|12|3)(4|0|12|35)
(14|5|02|3)(15|04|2|3)(14|5|0|23)
(1|5|02|34)(15|0|2|34)(1|04|2|35)

 C2 × S 3 36 203 12

7. Philosophical Remarks

The main argument used in this paper is what could be called siso: Symmetry in, symmetry out. This
principle appears to be universal in mathematics: Whenever that which enters a formal process (a proof,
an algorithm, whatever) obeys a certain symmetry, what comes out obeys at least the same symmetry. For
example, because i2 = −1, but also (−i)2 = −1, there is an automorphism of the complex plane called
complex conjugation and all statements that do not include functions or constants that explicitly break this
symmetry (such as the function that extracts the imaginary part, or the function that determines the argument
of a complex number, or a non-real constant) are preserved if all occurrences of i are exchanged for (−i).

As an application of the “siso principle” in this situation, consider the following way to prove that ii must
be a real number18 without actually computing it: Assume ii = a + bi, with a, b ∈ R. Then (−i)−i = a − bi
because according to the siso principle, we may replace all i with −i. Using that −i = i−1, we find that ii and
(−i)−i are equal: (−i)−i = (i−1)−i = i−(−i) = ii, and hence a + bi = a − bi, thus b = 0 and ii = a ∈ R.

Although this principle is a powerful tool of mathematical reasoning, I also view it as one of the fun-
damental limitations of the ability of mathematics to model reality. Failure to consider that reality is not
necessarily bound by the same restrictions as its mathematical models has led to such bizarre ideas as
Buridan’s ass or the many-worlds interpretation of quantum mechanics19.

8. Open Questions

Solving ooops seems conceptually related to strategies for cheating at multiple-choice questions that
rely on the habit of test designers to provide possible responses that are wrong but similar to the correct
response. The exact relationship between these two kinds of problem solving are beyond the scope of this
paper, but it might be interesting to think deeper about this.

18Let’s put aside the issue of complex exponentiation being multi-branched. Or let’s view this as a way to show that all the
branches yield real-valued answers.

19Although the latter is apparently also based on a failure to understand the implications of the superposition principle for linear
equations, namely that the multiverse would then be equivalent to a collection of non-interacting systems (the eigenmodes of the
Hamiltonian), in each of which nothing ever happens.
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There ought to be a better algorithm for generating ooops than brute force checking the many subsets
of the set of pre-ooops over Σ. For example, given a link constant20 ooop O, for all m the graph that has an
edge between each two objects of O that agree on m features is regular, and the edge sets of these graphs
are pairwise disjoint, which restricts the possibilities.

The category theoretical properties of ooops may be worth studying. A function m : Σ → Σ′ is a
morphism from an ooop O over Σ to an ooop O′ over Σ′ iff m(O) = O′. This naturally generalizes the
notions of automorphisms and isomorphisms of ooops defined earlier. It would be interesting to see if the
category of ooops has products, coproducts, or other limits which may be used to construct complex ooops
from simpler ones. It is perhaps also helpful to not only consider ooops, but all pre-ooops, and then find out
what characterizes the subcategory of ooops.
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